Multi-level hp-adaptivity and explicit error estimation

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Multi-level hp-adaptivity and explicit error estimation

Correspondence: [email protected] Chair for Computation in Engineering, Technische Universität München, Arcisstraße 21, 80333 München, Germany Full list of author information is available at the end of the article Abstract Recently, a multi-level hp-version of the Finite Element Method (FEM) was proposed to ease the difficulties of treating hanging nodes, while providing full hp-approximat...

متن کامل

Multi-Level hp-Adaptivity for Cohesive Fracture Modeling

Discretization induced oscillations in the load-displacement curve are a well known problem for simulations of cohesive crack growth with finite elements. The problem results from an insufficient resolution of the complex stress state within the cohesive zone ahead of the crack tip. This work demonstrates that the hp-version of the finite element method is ideally suited to resolve this complex...

متن کامل

Multi-Level hp-Adaptivity: High-Order Mesh Adaptivity without the Difficulties of Constraining Hanging Nodes

hp-refinement schemes have proven to be an excellent approach to locally adapt the accuracy of a Finite Element discretization. However, the implementation of hp-adaptivity remains challenging as hanging nodes, edges, and faces have to be constrained to ensure compatibility of the shape functions. For this reason, most hp-code frameworks restrict themselves to 1-irregular meshes to ease the imp...

متن کامل

A posteriori error estimation for hp-adaptivity for fourth-order equations

A posteriori error estimates developed to drive hp-adaptivity for second-order reaction-diffusion equations are extended to fourth-order equations. A C1 hierarchical finite element basis is constructed from HermiteLobatto polynomials. A priori estimates of the error in several norms for both the interpolant and finite element solution are derived. In the latter case this requires a generalizati...

متن کامل

Error estimation and adaptivity for incompressible hyperelasticity

A Galerkin FEM is developed for nonlinear, incompressible (hyper) elasticity that takes account of nonlinearities in both the strain tensor and the relationship between the strain tensor and the stress tensor. By using suitably defined linearised dual problems with appropriate boundary conditions, a posteriori error estimates are then derived for both linear functionals of the solution and line...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Advanced Modeling and Simulation in Engineering Sciences

سال: 2016

ISSN: 2213-7467

DOI: 10.1186/s40323-016-0085-5